Or South Orange County for that matter. NO Toll Roads next to our schools and Parks!

Motor vehicle emissions are a major source of ambient air pollution in the United States and elsewhere. In a recent meeting, the International Agency for Research on Cancer (IARC) classified diesel exhaust as carcinogenic and gasoline exhaust as possibly carcinogenic to humans (Benbrahim-Tallaa et al. 2012). Traffic exhaust contains carbon monoxide, nitrogen oxides, and toxic air contaminants such as benzene, formaldehyde, 1, 3-butadiene, and nitroarenes. Particulate components of traffic exhaust include metals, elemental carbon, organic carbon, and sulphate. A number of these components have been classified as established or suspected carcinogens in occupational settings (IARC 2012).

The literature on traffic-related air pollution and childhood cancers has been equivocal, likely for several reasons, including variation in exposure assessment methods and time periods of exposure. In addition, because of small numbers of cases, disparate cancer types were grouped as a single outcome. Many studies have used simple proxy measures of exposure such as rates of neighborhood car ownership, gas station density, or residential proximity to roads, gas stations, or car repair shops (Abdul Rahman et al. 2008; Alexander et al. 1996; Brosselin et al. 2009; Harrison et al. 1999; Nordlinder and Jarvholm 1997; Reynolds et al. 2002; Steffen et al. 2004; Weng et al. 2009). Other studies have classified exposure based on traffic density (Harrison et al. 1999; Langholz et al. 2002; Pearson et al. 2000; Reynolds et al. 2001, 2002, 2004; Savitz and Feingold 1989; Visser et al. 2004; Von Behren et al. 2008). Only a few studies have classified exposure based on measurements of air pollutants from air monitors (Amigou et al. 2011; Weng et al. 2008) or sophisticated air pollution modeling strategies that consider more factors that influence exhaust levels such as chemical reactions of pollutants, background pollution levels, land use, or weather (Crosignani et al. 2004; Feychting et al. 1998; Raaschou-Nielsen et al. 2001; Vinceti et al. 2012). In a previous study that compared different ways of measuring traffic-related air pollution exposures in relation to birth outcomes, Wu et al. (2011) showed that traffic density yields lower effect estimates than those generated in more complex models.

The literature is also limited in scope because most studies have reported only on leukemias, central nervous system (CNS) tumors, or all childhood cancer types combined, and few have had sufficient sample sizes to stratify by cancer subtypes or estimate associations with rarer tumors. Further, most studies assessed exposure using the child’s address at the time of diagnosis, study entry, or death, and are therefore best interpreted as estimating associations with traffic exposure during childhood. Because the pathogenesis of at least some childhood cancers is likely to begin in utero, these studies may not capture an important exposure period for early childhood cancers (Greaves and Wiemels 2003; Lafiura et al. 2007).

Information taken from EHP – Environmental Health Perspectives
Childhood Cancer and Traffic-Related Air Pollution Exposure in Pregnancy and Early Life

More Articles on Traffic Exposure and our kids health:

Exposure to traffic-related air pollution and risk of development of childhood asthma


Childhood asthma and exposure to traffic and nitrogen dioxide.


Tell CUSD we do not want a Toll Road next to your schools and parks!

Come to the  next CUSD Board Meeting June 28 at 7pm and let your voice be heard!

CUSD Board Meeting